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Abstract

This report describes several experiments used to characterize and test a suite of four radiation sensors.
The sensors are scintillation counters composed of plastic connected to an amplifier. The purpose of
these tests is to assess the feasibility of using these sensors to detect and track radioactive sources in a
large room. The tests are also used to compare a number of different detection and tracking algorithms.

We describe real-time algorithms for both detecting the presence and tracking the position of
radioactive sources in a facility in the presence of measurement noise. We formulate the detection
problem as a nonparametric hypothesis testing problem. This problem is solved by comparing a statistic
computed over some window(s) of the data to a threshold value. If this threshold is exceeded then we
decide that a source is present. We formulate the tracking problem as a state estimation problem and
solve it recursively using a constrained nonlinear optimization method. The optimization simultaneously
minimizes the change in source position and disagreement between measurements and a sensor model.
The sensor model is a fairly complex function relating position to detected count rate.

The overall purpose of this work is to enhance both security and safety by automating part of
the assessment process, allowing remote assessment, and introducing new sensor modalities into the
assessment process. We present detection and tracking results based on experiments done with one
source in a single room. Our results indicate that a source can be detected and tracked quite well
with these algorithms in spite of fairly poor signal to noise ratios, and rather high measurement noise
levels. In short, we demonstrate the capability to detect and track a single source in real-time with
high accuracy in spite of a complex mapping from source position to detected count rate, an unknown
background signal, and high measurement noise.
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1 Introduction

In this report we discuss various aspects of the problem associated with monitoring radioactive sources
in a particular facility. The facility in question conducts various experiments using radioactive materials.
Knowledge of the source locations has implications for both security and safety. Currently all security
and safety assessments are made by people who are physically present during experiments. The overall
purpose of the project is to provide tools to facilitate and enhance this assessment process. Our algo-
rithms are one part of a suite of tools which will allow some of these assessments to be made remotely.
The tools will also provide sensor modalities that are not available to people using only their own senses.
These tools will also be used to partially automate the assessment process. These three factors will en-
hance both security and safety by reducing personnel risk through remote assessment, providing new
methods and sensor modalities for risk assessment, and providing a source of independent verification
for the current assessment process.

This report consists of four major sections. The first section describes an experiment that was
performed in order to characterize the radiation sensors. The second section consists of conclusions
about the sensor characteristics based on an analysis of this data. The third section describes several
algorithms for detecting the presence of radioactive sources using the given sensors. The fourth section
discusses several procedures for tracking moving radioactive sources with these sensors.

The data for this problem is four time series consisting of the count rate at one second intervals from
four gamma ray detectors which are located at four different positions within the room. The count rate
at a particular sensor is the total number of gamma-energy photons received by the sensor during a
one second time interval. The specific sensors that we use consist of a photoluminescent slab of plastic
attached to a photomultiplier tube. The predominant source of measurement noise comes from the
stochastic nature of gamma emissions from the source itself. Ideally, the emission of gamma photons
from a radioactive source over time looks like a series of samples drawn from a Poisson distribution.
Since the variance of a Poisson distribution is equal to its mean, the deviation of the detector readings
is proportional to the square root of the mean count rate.

For source detection, we describe a number of nonparametric detection strategies for determining
the presence of radioactive sources in a facility. We detect a source by comparing a statistic computed
over some window(s) of the data to a threshold value. If the statistic value exceeds the threshold value,
then we decide that a source is present. All of these detection methods are forms of nonparametric
hypothesis testing. More specifically they fall into two broad categories. The first category computes
a statistic over some window of the time series from the sensors, and reports that a source is present
when the value of this statistic exceeds some threshold. The second category splits this window in half,
computes a statistic in each window half and compares the similarity of these two statistics. If the
two statistics are sufficiently different, then the method reports that a source is present. Any detection
method must be able to measure a change in a noisy time series signal against an unknown background
signal. The signal noise results from the signal being a Poisson process, and the background uncertainty
arises from being unable to measure the background level directly when a radioactive source is present.
The best source detection algorithm that we investigated from the first category of methods used the
variance to mean ratio as the statistic. The best strategy that we tested from the second category used
the Kolmogorov-Smirnov statistic to compare the two half windows.

For source tracking, we describe both recursive and moving horizon algorithms for recursively es-
timating the real-time positions of radioactive sources in a facility. In this work, we will explicitly
consider the problem of tracking a single source within one room. We estimate the position by assuming
a known initial source position and then estimating the change in its position from this initial state.
Our data consists of the measured time series from the four sensors described previously. Note that
these sensors do not form an image of the room in the way that a camera would. This means that
many of the techniques for locating moving objects in images can not be applied. Our approximations
of the detected count rate are based on a nonlinear model of each sensor which relates the source lo-
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cation to the measured count rate at that sensor. The best source tracking algorithm that we tried
was a recursive nonlinear least squares estimator which simultaneously minimizes the expected value of
the difference between the detector measurements and the model predicted count rates, and also the
expected value of the change in the source location, in the presence of noise. Because the measurements
come from a Poisson process, the uncertainty in the source location based on the detector readings is
roughly proportional to the square root of the mean count rate.

An analogy may clarify the difficulties associated with the tracking problem. Imagine a building
containing only one room and having a flat roof with four skylights cut into the ceiling, each near one
corner of the building. You are standing on the roof and someone is walking around in the room holding
a candle. You must determine the position of the candle in the room by observing the relative brightness
of the light coming through the four skylights. Keep in mind that the flickering of the candle leads to
variations in its brightness that are proportional to the square root of the brightness itself. This analogy
makes it clear that many image processing techniques for tracking moving objects would be ineffective
on this problem.

2 Description of Experiment

The experiment took place in the high-bay of TA-18. The layout of this room is illustrated in Figure 1.
The four radiation sensors are denoted by the gray rectangles lying against the walls. They are labeled
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Figure 1: A diagram of the layout of the facility. The thick dotted line running through the middle of
the room indicates the path that the source was walked along.

by the number of the communications port used to report their data to the computer system. All
distances are measured in feet and all angles in degrees. This experiment followed the time line shown
in Figure 2. The Start Background – Finish Background phase consisted of taking readings of the radiation
level in the high-bay with no other radioactive sources present. During the Start Americium – Finish
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Figure 2: The time line of the characterization experiment.

Americium phase an Americium Fluorine source whose tested strength was ∼105 was placed in the room
at 16 different locations for approximately 45–60 seconds at each location. During the Start Californium
– Finish Californium phase a Californium source whose tested strength was ∼106 was placed in the room
at these same positions for the same time duration at each of the positions. Conceptually the source
testing phases (i.e. Start Americium – Finish Americium and Start Californium – Finish Californium) each
consist of three steps.

Step 1:
Hold the source at 15 locations clustered around Sensor #3 for 45–60 seconds apiece. The position
of each test point was measured with respect to the center of this sensor. The purpose of this
step was to take data which will allow the sensitivity with respect to distance and angle to be
characterized.

Note that while testing the Americium source, the steel cover of the sensor was raised and held up
for 45–60 seconds while the source was at positions 1 and 7 in Figure 3. This was done immediately
following the regular measurements at these locations.

Step 2:
Hold the source at the center of the room for approximately 60 seconds. This step provides data
to assess whether the reading from each sensor is higher than the background reading when the
source is at its maximum distance from all sensors.

Step 3:
Walk the source down the middle of the room in the long direction. The data from this will be
used to test the algorithms which try to identify the source location from sensor data.

The room locations at which measurements were made are shown in Figure 3. Each × in this figure
indicates the location of a sensor measurement. The numbers beside each × are [ measurement number,
( x location, y location ) ]. The measurement number denotes the order in which measurements were
taken for each source, in other words 1 is the first measurement, 10 the tenth measurement, etc. The
pair ( x location, y location ) specify the distance in feet along the x and y axis respectively from the
center of the sensor at position • to the measurement location at ×. So the pair (−5, 3) indicates that
the measurement was taken at a point 5 feet to the left of the sensor (from the sensor’s perspective)
and 3 feet back from it. Sensor #3 is located in the middle of the wall lying to the right as the high-bay
is entered. The circled × is located approximately at the center of the room and the ( x location, y
location ) pair for this point gives the distance from the walls in the x and y directions (i.e. the lower
left hand corner of Figure 1). Following the readings at these 16 locations, the source was walked down
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Figure 3: The measurement locations for the characterization experiment.

the middle of the room as shown by the heavy dotted arrow in Figure 1. Information about the sensor
size and vertical position is shown in Figure 4. Note that the sensor height is measured from the floor to

3’

0.83’

Sensors #3, #4, #6: 8.17’

Sensor #5: 7.92’
Scintillation Plastic

Photomultiplier Tube

Floor

Figure 4: The size and vertical position of the radiation sensors.

the bottom of the plastic material inside the steel housing, not to the bottom of the steel housing. Also
note that Sensor #5 is slightly lower than the other three sensors. The efficiency of a detector is defined
as the ratio of the number of pulses recorded by the detector to the number of gamma photons incident
on the detector. For these detectors, the efficiency is rated at ∼10% when tested with a Cesium-137
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source. The dead time of a detector is defined to be the minimum length of time which must separate
time incident photons in order for them to be recorded as two separate pulses. The plastic material
used in these detectors is Bicron BC412, which has a rated dead time of 3.3 nanoseconds. Finally,
Table 1 summarizes some miscellaneous information about the sources. Note that the source height was

Source Type Source Strength Source Height
(counts per second) (feet)

Americium ∼105 5.75

Californium ∼106 7.0

Table 1: Miscellaneous information about the sources used for this test.

measured from the floor to the approximate place that the source was held. Since the source was being
held by a person during the experiment, there was probably a significant unmeasured variation in the
source height over the course of the experiment.

3 Characterization of Radiation Sensor Antenna Pattern

The primary purpose of this experiment was to obtain data for characterizing the antenna pattern of
the radiation sensors. In theory, the change in sensitivity of a radiation detector with respect to the
distance d from the source to the detector is proportional to 1

d2 . So the sensitivity of the detector
decreases geometrically with increasing distance. Similarly, the change in sensitivity with respect to
the angle θ between the source and the detector is proportional to cos θ. Hence the sensitivity of the
detector decreases with increasing angle. Since all of the measurements illustrated in Figure 3 are taken
with respect to Sensor #3, only its output will be considered in this section.

The time series data gathered during this experiment for Sensor #3 is shown in Figure 5. The regions
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Figure 5: The number of gamma ray counts per second recorded by Sensor #3 over the time of the
experiment.

labeled Background denote the times when no sources were unshielded in the room and the background
radiation level was being measured. The left hand region labeled Distance indicates the time when
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measurements 1 through 7 in Figure 3 where being made with the Americium source. Similarly, the
right Distance region marks the same seven measurements for the Californium source. The left region
labeled Angle shows the time when measurements 8 through 15 in Figure 3 where being taken for the
Americium source. Likewise the right Angle region illustrates the analogous reading for the Californium
source. Note that the large count values in these angle regions are measurements taken at 6 feet, while
the small values are measurements taken at 12 feet. The small unlabeled regions depict the times when
a source was either being held in the middle of the room, or being walked the length of the room.

The measurements taken in the Distance segments shown above were fitted to the model c = C1 + C2d2 ,
where c is the number of counts per second, and d is the distance from the source to the detector in feet.
The best fits to this model for the collected data are shown in Figure 6(a) for the Americium source,
and in Figure 6(b) for the Californium source. The fitted models are of the form
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Figure 6: (a) The number of gamma ray counts per second recorded by the detector as a function of
distance from the detector for the Americium source. The solid circles • represent the data
values for each distance, and the solid line shows the linear regression fit to those points.
(b) The number of gamma ray counts per second recorded by the detector as a function of
distance from the detector for the Californium source.

c = 1873.23 +
107962.64

d2
(1a)

c = 2666.05 +
280268.01

d2
, (1b)

where Equation (1a) is the fit to the Americium data, and Equation (1b) is the fit to the Californium
data. Some statistics to assess the quality of these two fits are shown in Table 2. The Multiple R2 is

Multiple R2 Residual Degrees F-Statistic p-Value
of Freedom

Americium 0.8896 263 2120 0
Californium 0.9512 291 5669 0

Table 2: Statistics for assessing the quality of the fits in Equation (1) to the data shown in Figure 6.
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the ratio of the variation of the fitted values to the variation of the data values, and is given by

R2 =

n∑
i=1

(
C1 +

C2
d2
i

− 1

n

n∑
i=1

(
C1 +

C2
d2
i

))2

n∑
i=1

(
ci −

1

n

n∑
i=1

(
C1 +

C2
d2
i

))2 , (2)

where n is the total number of data points in the sample. This statistic shows how much of the variation
in the data is accounted for by the model. In this case 89% of the variation in the Americium data is
accounted for by the fit in Equation (1a), and 95% of the change in the Californium data is incorporated
into the model in Equation (1b). The F-statistic is the ratio of the covariance between the fitted values
and the data values to the variation between the fitted values and the data values. In other words the
statistic is given by

F =

n∑
i=1

((
C1 +

C2
d2
i

− 1

n

n∑
i=1

(
C1 +

C2
d2
i

))(
ci −

1

n

n∑
i=1

(
C1 +

C2
d2
i

)))
n∑
i=1

(
ci −

(
C1 +

C2
d2
i

))2 . (3)

If there is a high correlation between the model values and the data values, the numerator of Equation (3)
will be large, and the denominator will be small. If there is no correlation between the model and data
values, then the numerator will be small and the denominator large. Therefore a large F-statistic implies
that the model provides a good fit to the data, while a small one means a bad fit. The underlying
distribution for this statistic is the ratio of two χ2 distributions, called a Fisher distribution. The Fisher
distribution has two degrees of freedom associated with it, one for each of the χ2 distributions composing
it. In regression analysis one degree of freedom is the number of independent variables in the regression,
which in this case is 1. The other degree of freedom is the difference between the number of data points
and the number of coefficients in the model, which in this case appears in Table 2 in the column labeled
Residual Degree of Freedom. The F-statistic forms the basis for a hypothesis test assessing the quality of
the fit between the model and the data. The null hypothesis is that the true slope of the regression line
is 0, meaning in this instance that there is no relationship between number of counts and distance from
the detector. The p-Value is the probability that the null hypothesis is true, given that the F-statistic is
greater than or equal to its observed value. So a small p-value means that there is a very small chance
that the F-statistic would have its observed value if there were not a relationship between number of
counts and distance from the detector. So a small p-value means that the model is a good fit to the
data, while a large one indicates a poor fit. Since the p-Value is 0 in Table 2 for both the Americium
and Californium sources, the models in Equation (1) are good fits for the data.

Similarly, the data taken in the Angle time segments in Figure 5 were fitted to the model c =
C1 + C2 cos θ, where c is the number of counts per second, and θ is the angle between the source and
the detector. Only data from the arc described by measurements at the points 9, 8, 2, 12, and 13 in
Figure 3 where fitted to this model. Note that all of these points lie in a 6 foot radius of detector #3.
The best linear models are of the form

c = 644.14 + 5175.53 cos θ (4a)

c = 5657.46 + 5969.29 cos θ, (4b)

where Equation (4a) is the fit to the Americium data, and Equation (4b) is the fit to the Californium
data. These fits for the collected data are shown in Figure 7(a) for the Americium source, and in
Figure 7(b) for the Californium source. Note that in Figure 7(a), the measurements taken at 0◦ were
not used in determining either of the illustrated fits. Likewise in Figure 7(b), the measurements taken
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Figure 7: (a) The number of gamma ray counts per second recorded by the detector as a function of
angle between the source and detector for the Americium source. The solid circles • represent
the data values for each distance, and the dashed line shows the linear regression fit to
those points.
(b) The number of gamma ray counts per second recorded by the detector as a function of
distance from the detector for the Californium source.

at 30◦ were not used in the regression. In Figure 7(a) the solid line is a fit to the model cos(θ + 7.05),
and in Figure 7(b) it is the fit to cos(θ − 4.35). Statistics to assess the quality of the two linear fits in
Equation (4) are shown in Table 3. Based on both the MultipleR2 and F-Statistic, both these models are

Multiple R2 Residual Degrees F-Statistic p-Value
of Freedom

Americium 0.6492 167 309 0
Californium 0.7783 193 677.6 0

Table 3: Statistics for assessing the quality of the fits in Equation (4) to the data shown in Figure 7.

fairly good fits for the data. However, the distance models are clearly superior to the angular models.

Finally, note that raising the steel cover over the detector leads to an average increase in the sen-
sitivity of 1.78 at 3 feet and 1.74 at 21 feet. For each distance, divide each data point taken with the
cover up by a corresponding data point taken with the cover down. This leads to two sets of data, one
set for each of the two distances, each set consisting of ratios of cover-up to cover-down measurements.
A hypothesis test using the non-parametric Wilcoxon test was done to determine whether the means
of these two data sets were equal. This means that the null hypothesis was that the two samples have
the same mean. Equal means for the two samples indicates that the increase in detector sensitivity is
independent of distance. The p-value of 0.375 for the Wilcoxon test indicates that at any significance
less than 37%, the null hypothesis should be accepted. The level of significance is the probability of
rejecting the null hypothesis when it is in fact true. So according to this test, the increase in sensitivity
at the two distances is the same, with fairly high significance.
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4 Detecting Sources with Radiation Sensors

This section discusses possible methods for detecting radioactive sources using data available from the
current sensors. Classical detection theory, as studied in electrical engineering for communication, is
based on the assumption that the process which generates the signal is fundamentally different from
that which generates the noise. In the present application this assumption is violated , because both the
signal and the noise are generated by the decay of unstable materials, such as uranium and plutonium,
into more stable elements. This means that one must find a statistic, such as the average signal strength,
whose value differs when a source is present (i.e., signal) from when it is absent (i.e., noise). This
problem is analogous to having a communication system in which the signal is generated by heating the
transmitter in order to increase its shot noise.

One of the simplest solutions to this detection problem is to compare the current signal strength to
a reference value which represents the average signal strength when no source is present. One difficulty
in the current facility is that sources are stored in the room containing the radiation sensors. Since
the shielding provided by the containers is not perfect, the stored sources constitute an unknown
contribution to the background level measured in the room. Since the number and type of sources
stored is subject to change, the background level will unquestionably vary with time. Hence a source
may be present in the room at all times, but it is considered part of the noise when it is in its storage
container and part of the signal when it is outside its container. In order to perform the aforementioned
comparison, some representation of the average background must be determined. This requires an
analysis of the background data collected in the experiment discussed in Section 2. To characterize
the properties of the background as a time series, two useful statistics are the autocorrelation and
the periodogram. The autocorrelation function for a time series is found by computing the correlation
coefficient ρx(k) for the series xt with a time shifted version of the series xt−k for different integer values
of k. This function shows whether the present value of the series is independent of previous values. The
periodogram function for a time series is found by computing the magnitude of the coefficients |Sx(f)| of
the exponential Fourier series representation for the time series. This function indicates where power is
distributed among the various frequency components of the time series. Strictly speaking, both of these
measures assume that the time series is stationary, but in practice they seem to be good diagnostic tools
even for non-stationary series. The autocorrelation and periodogram functions for the background data
of the experiment are show in Figures 8(a) and 8(b) respectively. These diagnostics reveal two features
which may make the background quite difficult to model. First, the autocorrelation function reveals
strong long-range serial correlations in the series. This means that consecutive time samples are not
independent, even worse, samples separated by two minutes are not independent. This implies that the
series can not be modeled by constructing an estimated probability distribution for the background and
drawing samples as needed to compare to the current reading. By its nature, such a method assumes
that each sample drawn from the distribution is independent of all other samples, which is clearly not the
case here. Second, the periodogram function shows that power is rather evenly distributed over a large
range of frequencies. Therefore there are no clear periodicities present in the background data. Both of
these diagnostics suggest that the time series may be non-stationary. This hypothesis can be tested by
looking at the moving median and moving median absolute deviation of the background. Median and
median absolute deviation (MAD) are used rather than mean and standard deviation because they are
far more robust in the presence of outliers. The moving median is simply the median computed over
the previous m samples of the series, where m is an integer. An analogous description applies for the
moving MAD. The moving median and MAD of the background for two minute windows are shown in
Figures 9(a) and 9(b). These plots clearly show that both the average and the variation around the
average change over time, making the background series non-stationary. The diagnostics in Figure 9
show two additional features. First, the variation of the median and the MAD over time is very large,
especially in the case of the MAD where it is almost an order of magnitude. Second, the ratio of the
median to the MAD squared (cf the mean to variance ratio) is very small, indicating a very large
variance in the underlying process. In fact, these four diagnostics tend to support the hypothesis that

9
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Figure 8: (a) The autocorrelation function of the background series over time lags of up to 5 minutes.
(b) The periodogram function of the background series for periods of up to 30 seconds. Note
that the width of the smoothing window is 0.0842385 with a 95% confidence interval of
(−2.63618, 3.80533) dB. Also note that a moving series average with a 60 sample (i.e., 1
minute) window size was subtracted from the background series before computing the peri-
odogram.

the background data was generated by a non-stationary, correlated, white noise source.

In spite of the difficulties implied by the previous diagnostics, there are techniques which in principle
may model the background series. Among the simplest are the autoregressive integrated moving average
(ARIMA) models discussed in Box, Jenkins, and Reinsel (1994, Chapter 4). Intuitively these models
allow certain types of non-stationary behavior by modeling the dth order difference series as a stationary
autoregressive moving average (ARMA) process. The dth order difference series of xt is defined (1 −
∇)d xt where the operator ∇i xt = xt−i. Hence the second difference series is (1−∇)2 xt = xt−2 xt−1 +
xt−2. An ARIMA model based on the first difference is homogeneous except in level, meaning that
except for vertical translation, one part of the series looks much like another part. When the second
difference is used, the series is homogeneous except for level and slope. The mathematical form of an
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Figure 9: (a) The moving median of the background series for a 2 minute window.
(b) The moving median absolute deviation of the background series for a 2 minute window.
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ARIMA model is

(1−∇)
d
xt −

p∑
k=1

Ak (1−∇)
d
xt−k = nt −

q∑
k=1

Mk nt−k, t = 1, 2, . . . , (n− d), (5)

where xi is the model value (i.e., system output) at time i, and ni is the value of a white noise process
(i.e., system input) at time i. The coefficients Ai and Mi weight the effect of previous outputs and
inputs, respectively, on the current output. The quantity n is the number of samples in the original
(i.e., undifferenced) time series. When using ARIMA models there are three integers which must be
chosen; the order of the difference series d; the number of autoregressive (AR) terms p; and the number
of moving average (MA) terms q. An ARIMA model based on the dth difference series with p AR
terms and q MA terms is denoted ARIMA(p, d, q). One way to chose these quantities is to plot the
autocorrelation and partial autocorrelation functions for several difference series orders d1, d2, . . . , dn.
The proper difference order di can be heuristically selected as the order which yields a “small” number
of “large” values in both of these plots. The partial autocorrelation function for a time series is found by
computing the last partial autocorrelation coefficient φx(k, k) for the series xt with a time shifted version
of the series xt−k for different integer values of k. This function shows the correlation between xt and
xt−k which is not accounted for by xt−1, xt−2, . . . , xt−k+1. Heuristic choices for the number of AR and
MA terms p and q, are the number of “large” values in the partial autocorrelation and autocorrelation
functions, respectively. This heuristic is based on the analytical result that an AR process of order p
has exactly p non-zero values in the partial autocorrelation function. Likewise, a qth order MA process
has only q non-zero values in its autocorrelation function.

For the background series in question, the first and second difference series appear to have the
smallest number of large values in the autocorrelation and partial autocorrelation functions. For higher
order differences, the number of significant peaks seems to increase, indicating over-differencing. As
an example, the autocorrelation and partial autocorrelation for the first difference of the background
are shown in Figure 10. On the basis of these plots one might expect a good fit from a first difference

0 1 2 3 4 5

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Lag k (Minutes)

A
u
to

co
rr

el
a
ti

o
n
ρ
x
(k

)

(a)

0 1 2 3 4 5

-0
.3

-0
.2

-0
.1

0.
0

Time Lag k (Minutes)

P
a
rt

ia
l

A
u
to

co
rr

el
a
ti

o
n
φ
x
(k
,k

)

(b)

Figure 10: (a) The autocorrelation function of the first difference of the background series (i.e., xt−xt−1)
over time lags of up to 5 minutes.
(b) The partial autocorrelation function of the first difference of the background series (i.e.,
xt − xt−1) over time lags of up to 5 minutes.

ARIMA model with at most four AR terms and at most two MA terms. For completeness, second
difference ARIMA models were also fit to the data. There are several standard diagnostics for assessing
the fit of an ARIMA model to data. Many of the diagnostics are founded on the notion of the residual,
which is the difference between the actual data and the value of the ARIMA model, at each sample
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time. For an ARIMA model, a recursive form for the residual is

n̂t = (1−∇)
d
x̂t −

(
p∑
k=1

Ak (1−∇)
d
x̂t−k −

q∑
k=1

Mk n̂t−k

)
, t = 1, 2, . . . , (n− d) (6)

where x̂i is the actual data value at time i, and n̂i is the residual value at time i. One of the simplest
diagnostics is to look at the plot of the residuals n̂t for all times t. If the model is a good fit for the data,
there should be no noticeable structure in this time series, and the range of the residuals should be much
smaller than the range of the data. Another straightforward diagnostic is to plot the actual data values
x̂t versus the predicted values xt for the same time period. If the model fits the data well, these plotted
values should cluster around the straight line x̂t = xt. Another test is to plot the autocorrelation of the
residuals ρn̂(k). An estimator for these autocorrelations has the form

ρn̂(k) =

n∑
t=k+1

(
n̂t −

1

n

n∑
t=1

n̂t

)(
n̂t−k −

1

n

n∑
t=1

n̂t

)
n∑

t=k+1

(
n̂t −

1

n

n∑
t=1

n̂t

)2 , k = 0, 1, 2, . . . ,k ≤ (n− d), (7)

where k is the time lag computed. For a good model fit the time series of residuals should be a white
noise process, hence the correlation of residuals from different time lags k should be very small. Rather
than considering the autocorrelations individually, another useful indicator is the first k autocorrelations
taken together. One statistic of this type, which is used to judge model adequacy, is the sum of the
squares of the first k autocorrelations

Q = (n− d)
k∑
k=1

ρ2
n̂(k). (8)

The underlying distribution for Q is a χ2 distribution with (k−p−q) degrees of freedom. This statistic
is used in a “portmanteau” test of the hypothesis that the model is a good description of the data. For
every desired time lag k, a p-value is returned for this hypothesis test. The p-value specifies the maximum
significance at which the null hypothesis should be accepted. So if the desired level of significance is
less than the p-value, accept the null hypothesis, otherwise reject it. The level of significance is the
probability of rejecting the null hypothesis when it is true. The relevant diagnostic resulting from this
hypothesis test is a plot of the p-values associated with Q for a number of different time lags k. If the
model fits the data well, these p-values should be fairly close to 1, indicating that the null hypothesis
(i.e., the model fits the data well) should be accepted for any reasonable significance. In a sense the p-
value is the probability that the current value of Q implies that the model fits the data. A final measure
of fit quality is the cumulative periodogram |Cn̂(f)| of the residuals. This is computed for frequency
fi by summing the normalized magnitudes of the exponential Fourier series coefficients |Sn̂(fi)| for all
frequencies up to fi. This function reveals any periodic nonrandomness in the residuals. When the
model fit is good, all the values of |Cn̂(f)| are scattered around the straight line joining the points (0, 0)
and (0.5, 1). Of the models tried, a first difference model with three AR terms and one MA term (i.e.,
an ARIMA(3,1,1) model) gave the best fit based on the three standard diagnostics shown in Figure 11.
From the above discussion about these diagnostics, ideally all the autocorrelations, except the first,
should lie inside the dotted lines, all the p-values should be close to 1, and the cumulative periodogram
should always lie between the two dotted lines. These model diagnostics are discussed in detail in Box
et al. (1994, Chapter 8). In spite of the good performance of the ARIMA(3,1,1) model with respect to
these diagnostic statistics, it actually provides a very poor fit to the experimental data, which is clearly
shown in Figure 12. Figure 12(a) graphs the residuals for the ARIMA(3,1,1) model at each sample
time. This plot reveals that the range of the residuals is the same as the range of the first difference
series of the background, which is a clear indication that the model is not capturing the character of
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Figure 11: (a) The autocorrelation function of the residuals for the background data when fit to an
ARIMA(3,1,1) model.
(b) The probability that the ARIMA(3,1,1) model would generate the observed autocorrela-
tions up to lag k if it were a good fit to the data. This is a portmanteau test of the hypothesis
that the model is adequate.
(c) The cumulative of the residuals for the data when fit to an ARIMA(3,1,1) model. The
cumulative periodogram at frequency fi is the sum of the spectral densities at all frequencies
up to fi.

the data. Figure 12(b) plots the predictions of the ARIMA(3,1,1) model versus the actual background
data. Ideally, the points in this plot should cluster around the dotted line running through the center.
Instead this graph indicates that the range of the predictions is much smaller than the range of the
actual data, and in fact most of the predicted values lie in a very narrow window around the value 1854.
These plots indicate that the ARIMA(3,1,1) model captures the mean of the series but fits none of its
variance. Both of these plots make it clear that the ARIMA(3,1,1) model is a very poor model of the
actual background series.

Since it does not appear that the entire background series can be well modeled by any reasonably
simple model, the next logical step is to try to model some smaller window of the data. Conceptually this
model or summary can be compared to the current data value, and a decision concerning the presence of
a source made on the basis of this comparison. Intuitively, one of the simplest versions of this approach
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Figure 12: (a) The residuals for the background data when fit to an ARIMA(3,1,1) model.
(b) The background values predicted by the ARIMA(3,1,1) model versus the actual back-
ground data.
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involves setting a threshold based on some “window” of the data, and deciding that a source has been
detected when the actual sensor signal exceeds the computed threshold signal. Since both the median
(cf mean) and the median absolute deviation (cf standard deviation) of the background signal are
time-varying, as illustrated in Figure 9; and since the signal deviation is large, it makes sense to set a
threshold equal to the median plus some number of median absolute deviations. A slightly different,
but still simple, approach is to look for some characteristic change in the model or summary. Methods
of this type are discussed in Basseville and Nikiforov (1993). A straightforward method of this type is
to decide that a source has been detected when the ratio of the median absolute deviation squared (cf
variance) to the median abruptly changes in value.

A test series was constructed by inserting the measurements taken while standing in the middle
of the high-bay with the Americium source and while walking the length of the high-bay with that
source, between the two sets of background measurements. This test series is a worst-case scenario in
the sense that the distance from the source to all detectors is as large as possible, and the strength of
the source is as small as is likely. The results for both strategies outlined above are shown in Figure 13.
The first approach uses a moving window of 2 minutes worth of data. For this method, the previous 2
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Figure 13: (a) The test series plotted with both the on-set and off-set detection thresholds.
(b) The test series plotted with the ratio of variation to average threshold.

minutes of data are used to compute a threshold for detecting the arrival of a source in the room. This
threshold was constructing by taking the median value of the previous 2 minutes of data and adding 3
times the median absolute deviation for the previous 2 minutes of data. When the actual sensor data
goes above this threshold then a source is considered to be present. In order to detect the departure
of a source, a similar threshold is constructed using the following 2 minutes of data. When the sensor
data drops below the second threshold the source is considered to be absent. Since the two thresholds
are identical except for a time shift, they can both be computed from the previous 2 minutes of data.
However, the first threshold is computed at the current time, while the second is computed at a time
2 minutes previous. This method is illustrated in Figure 13(a), and it looks fairly effective at catching
when a source is present. Note the false alarm at about 6 minutes, but this change appears to the naked
eye like a source coming into the room. The second approach also uses a moving window composed
of 2 minutes of data. For this method, the previous 2 minutes of data is used to compute the ratio of
the median absolute deviation squared to the median 2 minutes ago. When the value of this statistic
abruptly increases, a source has entered the room, and when it decreases one has left the facility. The
resulting detection threshold is graphed in Figure 13(b). Note that threshold lags the actual signal by 2
minutes since past data is used to compute the present ratio. This method also appears quite effective
except for the false alarm at 6 minutes. Note that the pair of vertical dotted lines denotes the region in
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which a source is present in the signal.

A slightly different approach to detection is to split each window in half, compute some statistic in
each half of the window, and compare the similarity of these two statistics. If the two statistics are
different then a source is present. Note that each window half will be called a sample, and the elements
in each window half will be called observations. Denote the sample from one half of the window by
the vector x drawn from the random variable X, and the sample from the other half by y drawn from
Y. A very well known test for comparing cumulative distribution functions is the Kolmogorov-Smirnov
test, which is discussed in Conover (1980, Chapter 6) and Hollander and Wolfe (1973, Chapter 10). The
cumulative distribution function (cdf) is a mapping which assigns the probability that a random variable
Z is less than or equal to some specific value z for all possible z values, in other words FZ(z) = P{Z ≤ z}.
The test statistic is

K = sup
−∞<z<∞

|FX(z)− FY(z)| (9)

where FX(z) is the cdf computed from the sample x (i.e., the first window half), and FY(z) is the
cdf calculated for sample y (i.e., the second window half). In both halves of the window the cdf is
approximated by computing the histogram in that half and computing the value of the cdf for the ith
bin by taking the cumulative sum of the number of elements in each bin of the histogram up to the ith
bin. Intuitively thisK statistic is the maximum difference between the two distributions. The underlying
probability density function for K is 1 − 2

∑∞
l=1(−1)l−1 e−2 l2w2

for all w > 0. The null hypothesis is
FX(z) = FY(z) for all z, and the alternative is FX(z) 6= FY(z) for at least one value of z. The null
hypothesis is accepted if the test statistic K is less than some threshold TK which is chosen based on the
desired false alarm rate α. Recall that a hypothesis test returns a p-value which specifies the maximum
significance at which the null hypothesis should be accepted, and that the level of significance is the
probability of accepting the alternative hypothesis when the null hypothesis is true. This means that
selecting a significance level in hypothesis testing is equivalent to choosing a maximum false alarm rate
in detection. If the desired false alarm rate is less than the p-value, accept the null hypothesis, otherwise
reject it. Hence a p-value close to one means the two cdfs are equal (i.e., no source present), and a
p-value near zero indicates they are not equal (i.e., source present). Note that in order for this test
to return a small p-value the entire time a source is present, the cdf when a source is absent must
differ from the cdf when a source is present, and the cdf must change fairly quickly while the source is
present. The results for this method are shown in Figure 14. The right hand axis in both these plots is
the logarithm of the inverse of the p-value, rather than the p-value itself. This means that high values
indicate the presence of a source and low values the absence of one. Figure 14(a) shows this statistic
for a 2 minute window size, and Figure 14(b) plots it for a 4 minute window. Note that the threshold
should lag the actual signal since past data is used to compute the present p-value. The fact that the
threshold leads the signal in both plots indicates a false alarm in the portion of the background that
directly precedes the appearance of the source. Since this test signal is pieced together, this false alarm
may be due to an error in deciding when the background signal ended. In any case it seems reasonable
to state that both window sizes catch the leading edge of the source signal. Clearly the 2 minute window
does not catch the trailing edge of the source signal, while the 4 minute window appears to catch it.

Many similar detection strategies are discussed in Gibson and Melsa (1975). One of these strategies is
called the Spearman Rho Detector. This detector is based on the Spearman Rho test which is discussed
in Conover (1980, Chapter 5) and Hollander and Wolfe (1973, Chapter 8). In the context of the current
problem this detector computes a correlation coefficient between the two window halves and then tests
to determine whether these two samples are correlated or not. Intuitively one would think that in the
present situation the correlation between window halves would be non-zero with no source and zero
with a source. Since the autocorrelation estimator in Equation (7) depends on the probability density
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Figure 14: (a) The test series plotted with the Kolmogorov-Smirnov threshold for a 120 second window.
Note that in this plot high values indicate the presence of a source.
(b) The test series plotted with the Kolmogorov-Smirnov threshold for a 240 second window.
Note that in this plot high values indicate the presence of a source.

from which the samples are drawn, Spearman developed a different correlation measure given by

R =

n∑
i=1

(
Rx(xi)−

1

2
(n+ 1)

)(
Ry(yi)−

1

2
(n+ 1)

)
1

12
n(n + 1)(n− 1)

, (10)

which is independent of the underlying distribution. In this equation Rx(xi) and Ry(yi) are the ranks
of the observations in the two samples x and y, xi and yi respectively for i = 1, . . . ,n. Specifically,
Rx(xi) = 1 if xi is the smallest observation in magnitude, Rx(xi) = 2 if xi is the second smallest in
magnitude and so on. The observation with the largest magnitude has rank n. The exact probability
density of R can not be analytically determined, but it has been shown that asymptotically the random
variable Z =

√
n− 1 R has a Gaussian probability density function. The null hypothesis is that the

samples x and y are independent, and the alternative is that the standard autocorrelation coefficient ρ
is greater than zero. Note that in general, independence implies that ρ = 0, but that the reverse is false.
The hypothesis test returns a p-value which if near one means that the window halves are correlated
(i.e., no source present), and if near zero means that the two window halves are uncorrelated (i.e., source
present). The result of using this detector is shown in Figure 15(a). The Spearman detector seems to
trigger on the leading and trailing edges of the time interval containing the source. For some reason the
leading edge spike is not markedly higher than some of the spikes in the background intervals. Note that
the presence of spike trains in the background intervals indicates that the window halves are probably
not independent even when a source is absent.

Another strategy discussed in Gibson and Melsa (1975) is the Wilcoxon Rank Sum Detector. This
detector is based on the Wilcoxon Rank Sum test which is discussed in Conover (1980, Chapter 5) and
Hollander and Wolfe (1973, Chapter 4). Conceptually this detector determines whether the cdfs in the
two window halves are equal by finding the probability that the sample from one half is greater than the
sample from the other half. If this probability is equal to 1

2 then the cdfs are the same, if not they are
different. Note that this implicitly assumes that the two samples x and y are independent. To perform
this test, combine all of the observations from the two samples, and rank the 2n observations in this
combined sample. As described above, ranking amounts to sorting the observations in ascending order
by magnitude and replacing the smallest observation by the number 1, the second smallest by the number
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Figure 15: (a) The test series plotted with the Spearman threshold for a 120 second window. Note that
in this plot high values indicate the presence of a source.
(b) The test series plotted with the Wilcoxon threshold for a 120 second window. Note that
in this plot high values indicate the presence of a source.

2, and so on up to the largest which is replaced by 2n. The notation x⊕ y denotes the concatenation
of the two samples x and y. The test statistic W is the sum of the n ranks from one of the two original
samples, in other wordsWx is the sum of the ranks of the n xi valuesWx =

∑n

i=1Rx⊕y(xi). The exact
probability density ofW can not be analytically determined, but it has been shown that asymptotically
it has a Gaussian probability density function. The null hypothesis is that the probability that the
observations from one sample are greater than the other P{X < Y} is equal to 1

2 , and the alternative
is that this probability is not 1

2 . The hypothesis test returns a p-value which if near one means the
two cdfs are equal (i.e., no source present), and if near zero indicates they are not equal (i.e., source
present). The result of using this detector is shown in Figure 15(b). The Wilcoxon detector also triggers
on the leading and trailing edges of the source interval. However, it also triggers strongly on several
places in the background, among them the anomalous change in the background at about 6 minutes.
Some of the problems with the Wilcoxon detector may result from the fact that many pairs of window
halves are not independent as indicated by Figure 15(a). Finally, note that all three of these detection
strategies assume that the observations in a particular window half are independent. Among other
things this means that there is no serial correlation in any specific sample. For the current data set
this assumption is violated in many window halves. One way to eliminate the serial correlation is to
use the first difference series instead of the actual time series. Unfortunately, all of the above detection
methods perform much poorly with the difference series than they do with the undifferenced series. We
believe that part of the explanation for this observation is the fact that the difference series contains no
information about changes in the mean, and the loss of this information makes the detection problem
much harder.

5 Locating Sources with Radiation Sensors

This section discusses possible methods for locating radioactive sources using data available from the
current sensors. All of the methods considered require a model relating the source location to the
detected count rate. One possible model is considered in the first subsection. The problem of source
location can be viewed as the search for a mapping from detected count rate to source location. Therefore
given a mapping from source location to detected count rate, the problem reduces to inverting this
mapping. The solution to this problem will be framed in two ways; first as a root finding problem; and
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second as a nonlinear least squares estimation problem. Note that the first formulation constitutes a
special case of the second.

5.1 Sensor Model

In this section we discuss the model that relates the detected count rate from a point source to the
position of that source based on the analysis in Tsoulfanidis (1983, Chapter 8). For the ith detector,
the relationship between the detected count rate Di and the source position (ui, vi, wi) relative to that
detector is given by

Di =
Ωi(ui, vi, wi)S εi Fi + Bi
1 + τi Ωi(ui, vi, wi)S εi Fi

⇒ Di =Mi(ui, vi, wi)

(11)

for i = 1, 2, . . . ,m, where in our case m = 4. In this equation S is the actual source strength, εi is the
detector efficiency, τi is the dead time, Fi is the product of all the correction factors (e.g., absorption
and backscattering), Di is the total number of counts per unit time actually detected, Bi is the number
of counts per unit time which constitute the background, and the view factor Ωi(·) is the ratio of the
number of particles which actually enter the detector to the total number of particles emitted by the
source. The quantity Ωi(·) can also be thought of as the solid angle subtended by the detector for a
particular source location, which ranges between 0 and 4π. For these detectors, the efficiency is rated
at ∼10% for a Cs137 source. The dead time of a detector is defined to be the minimum length of time
which must separate incident photons in order for them to be recorded as two separate pulses. The
photoluminescent material used in these detectors has a dead time of 3.3 nanoseconds. Note that there is
one equation of this form for each of the m detectors. We will use the right hand side of Equation (11) as
an approximation for the count rate given a particular position (ui, vi, wi), and we denote this function
by Mi(·).

For a point source and a rectangular detector of finite size, the most general relative position is
shown in Figure 16. The solid angle Ωi(·) subtended by a detector of width W and height H for a point

v

u
w

W

ui

S

H

wi

Figure 16: The relative position between a point source at position S and a rectangular detector of
width W and height H. The projections of the source location onto the u and w axes are ui
and wi respectively.
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source located at (ui, vi, wi), relative to the ith detector, is given by

Ωi(ui, vi, wi) = arctan

(
uiwi

|vi|
√
u2
i + w2

i + v2
i

)
− arctan

(
(ui −W)wi

|vi|
√

(ui −W)2 + w2
i + v2

i

)

− arctan

(
ui (wi −H)

|vi|
√
u2
i + (wi −H)2 + v2

i

)
+ arctan

(
(ui −W) (wi −H)

|vi|
√

(ui −W)2 + (wi −H)2 + v2
i

) (12)

as shown in Gotoh and Yagi (1971). The detectors that were used have a height H of 0.83 feet and
a width W of 3.00 feet. The minimum value of Ωi(u, v, w) is 0, and its maximum value is 2π since
even when the source is touching a planar detector, only half of the emitted photons will actually
strike the detector. The variation of the solid angle Ωi(u, v, w) with position is illustrated in Figure 17.
Figure 17(a) shows the variation in the u-v plane with the source fixed along the w-axis at H2 , and
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Figure 17: The variation of the solid angle Ωi(u, v, w) in the (a) u-v plane (b) w-v plane. The third
dimension was fixed at (a) w = H

2 (b) u = W
2 .

Figure 17(b) plots the change in the w-v plane with the source fixed along u at W2 . Note that the solid
angle is always positive and approaches 2π as the source gets closer to the detector. Also the solid angle
decreases monotonically both as the source-detector distance increases and as the source-detector angle
increases. We define source-detector angle as the angle measured relative to the line perpendicular to
the center of the detector. Hence this angle is 0 when the source is directly above the center of the
detector.

It is clear from Figure 16 that the coordinate system used to derive Equation (12) is detector centered,
not room centered. Since the desired answer is the source location in room centered coordinates, a
transformation must be made between these two coordinate systems. The required transformation
converts room centered coordinates (x, y, z) into detector centered coordinates (ui, vi, wi), which allows
Equation (12) to be properly evaluated. One way to construct this transformation is by moving each of
the detectors from their actual location to the selected origin of the room. This is accomplished by first
rotating the sensor about the w-axis in Figure 16, and then translating the rotated sensor to the origin
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of the room. This transformation can be written in matrix form asuivi
wi

 =

 cosAi sinAi 0 Tx,i cosAi + Ty,i sinAi

− sinAi cosAi 0 Ty,i cosAi − Tx,i sinAi

0 0 1 Tz,i



x

y

z

1

 , (13)

where Tx,i, Ty,i, and Tz,i are the translations along the room centered x, y, and z directions, respectively,
for the ith detector. The quantity Ai is the rotation angle around the w-axis for the ith detector. Note
that the source location in room centered coordinates is (x, y, z). Also note that the source strength S
is independent of position, so it is unchanged under coordinate transformation.

5.2 Locating Sources using Root Finding

This subsection formulates the source location problem as a root finding problem using the sensor model.
Recall from Figure 1 that there are four radiation sensors in the current facility, hence there are four
functions in the form of Equation (11). Rewrite each of these equations in the form fi(x, y, z,S) = 0 for
i = 1, . . . , 4. All four of these equations taken together yield a vector equation of the form f(x, y, z,S) =
0. The only valid location(s) (x, y, z) and source strength(s) S are those which cause f(·) to be close to
zero. So intuitively, locating the source is a multidimensional root finding problem in which the roots
are points specifying a location and a source strength. The function f(·) is called the residual and the
states are collectively denoted by the vector e† = [x y z S]. The root finding problem consists of finding
a state e which minimizes the residual f(e). One way to solve this problem is to compute the second
order Taylor series expansion of f(e) about the point e

fi(e+ δe) = fi(e) +
m∑
j=1

∂fi

∂ej
δej +O(δe2), i = 1, 2, . . . ,m. (14)

Neglecting terms of order δe2 and higher and setting f(e+ δe) = 0, we obtain a set of linear equations
for the corrections δe that move each residual fi(e) toward zero simultaneously. For the kth iteration
of the algorithm, the vector form of these equations is

δek = −J−1
f (ek)f(ek), (15)

where Jf (ek) is the Jacobian matrix of the system ∂f(ek)
∂ek

. The corrections are added to the solution
vector giving the update rule

ek+1 = ek + αk δek, (16)

where αk ∈ (0, 1] is a weighting factor to keep the algorithm from overshooting the solution. This
algorithm for root solving is commonly known as the Newton-Raphson method, it is a special case of
the Gauss-Newton algorithm, and is discussed in Fletcher (1987, Chapter 6). Intuitively, the Newton-
Raphson method fits a tangent hyperplane to each component fi(·) at the point ek for each equation i =
1, . . . ,m and then seeks the intersection of thesem hyperplanes. The actual root is approximated by this
intersection point, which then becomes the next point ek+1 at which the hyperplanes are constructed. In
one dimension the iterative process is illustrated by Figure 18. The process begins at x0 by constructing
the tangent line to f(x) at this point. The intersection of this tangent with the x-axis is found and
denoted x1. The value of f(x) is computed at this new point and then the tangent to f(x) at x1 is
found. The algorithm proceeds in this manner until the root is located.

One reasonable way to choose αk is outlined in Press et al. (1992, Chapter 9). The strategy consists
of choosing a value of αk at each iteration such that the function r = 1

2f
†f is reduced. Note that every
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x0x1

x

f(x)

x2

Figure 18: The progression of iterations in the Newton-Raphson algorithm in one dimension.

root of f(e) = 0 is also a local minimum of r, but there may be local minima of r which are not roots
of f(e) = 0. This means that trying to find the roots of f(e) = 0 by simply minimizing r is likely to
perform very poorly. Also note that the Newton step direction defined by δe is a descent direction of
r since ∇r† δe = (J†f f)†(−J−1

f f) = −f†f < 0. The algorithm begins by trying the full Newton step
(i.e., αk = 1) in the direction defined by δek and checking to see whether this step reduces r. If r is
reduced then this step is taken, if not then the algorithm backtracks along the direction specified by
δek until a value of αk is found which does reduce r. Since the Newton step direction δek is a descent
direction of r, backtracking along δek is guaranteed to find an acceptable step size αk. This modification
of Newton’s method converges to a root from almost any starting point. This is in sharp contrast to
pure Newton’s method which tends to diverge to infinity unless it is started very close to a root. Other
root finding methods which have almost global convergence properties are discussed in Fletcher (1987,
Chapter 6), Press et al. (1992, Chapter 9) and Dennis and Schnabel (1983, Chapter 6).

Of course there are problems that any root finding method will have difficulty with. Some of the
principle difficulties that may be encountered with any numerical root finding procedure are: moving
into a region where the Jacobian Jf is singular or nearly so; converging to a spurious solution, such as a
minimum of r which is not a root of f(e) = 0; and searching for roots whose order is greater than one,
for example the root at x = 0 of x4 = 0. Since the current problem exists in a four dimensional space,
the zero contours for this set of equations can not be plotted directly. Instead we will try to assess
the nature of this root solving problem by plotting

√
2 r (i.e., the 2-norm of f(e)) versus two state

variables at a time. This is reasonable since a root of f(e) = 0 must be a minimum of r. These plots are
shown in Figure 19 where Figure 19(a) shows the 2-norm of f(·) plotted with respect to x and y with
z and S held constant at 6.5 feet and 2.5× 106 counts per second respectively, and Figure 19(b) shows
the 2-norm of f(·) plotted against z and S with x and y fixed at 29 feet and 9 feet respectively. The
detected count rates used to compute these two surfaces were obtained from the experiment described
in Section 2 with the Californium source at the location labeled [3, (9, 0)] in Figure 3. This means that
the actual source location on which these calculations were based was (29, 9, 6.5). The source strength
was not known exactly but was on the order of 106. Note that the surfaces in Figure 19 were computed
assuming a background level of 1200 counts per second, but it appears that the qualitative geometrical
features are unchanged by altering this value. It is clear from Figure 19(a) that there is a well defined
region where ‖f(x, y)‖2 is small. One difficulty is that all of the points on this horseshoe surrounding
detector #3 have similar values of ‖f(x, y)‖2, which may make finding the true minimum along this
curve rather difficult numerically. Another potential problem revealed by this picture is that most of
this surface is quite flat, meaning that it may be difficult for an algorithm to determine which direction
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Figure 19: (a) The 2-norm of f(·) plotted with respect to x and y with z and S held constant at 6.5
feet and 2.5 × 106 counts per second respectively.
(b) The 2-norm of f(·) plotted with respect to z and S with x and y held constant at 29 feet
and 9 feet respectively.

to move in order to find a minimum. Figure 19(b) also shows a well defined region where ‖f(z,S)‖2
is small, but it also presents the difficulty of finding the actual minimum along this parabolic curve of
similar ‖f(z,S)‖2 values. Figure 19(b) implies that there are a series of source strength, source height
pairs with very similar values of ‖f(z,S)‖2, meaning it may be difficult to decide whether there is a
stronger source high above or below the detector, or a weaker source level with the detector.

Three root solving methods have been implemented and tested on the source location functions
given by Equations (11), (12), and (13). All three methods are local search techniques in the sense that
information from a small neighborhood of the current position is used to decide which direction to move
in order to get closer to the root. One of the algorithms used is the Newton-Raphson algorithm described
previously. The Newton-Raphson method can diverge very rapidly, usually as a result of being near a
horizontal point in the curve f(e) (e.g., a minimum, maximum, or saddle point). This behavior is due
to the fact that the derivative information used by the algorithm is all gathered at a single point ek. One
way to correct this problem is to replace the derivative by the slope of the line segment connecting two
different points, ek and ek−1, on the curve f(e). This modification is called the secant method in one
dimension. One of the multi-dimensional generalizations is called Broyden’s method, which is another
of the algorithms used. Both the Newton-Raphson and Broyden’s methods can stall if the curve f(e)
contains a region which is fairly flat (i.e., the Jacobian Jf is close to being singular). If this occurs the
search direction δe may fail to exist entirely or may point away from a solution. One way to solve this
problem is to consider a combination of two search directions, for instance one defined by −J−1

f f (i.e.,

the Newton-Raphson search direction) and the other defined by J†f f (i.e., the gradient ∇r of 1
2f
†f).

The search direction used is the linear combination of these two directions which reduces r the most.
The length of this step is restricted to be no longer than the length of the vector sum of the Newton and
gradient vectors. A number of techniques of this sort exist, which collectively are known as restricted
step or trust region methods. The final algorithm used is a trust region method due to Powell. Both
the Newton-Raphson and Broyden’s method implementations are modifications of the algorithms given
in Press et al. (1992, Chapter 9). The implementation of Powell’s method is a modification of the code
in minpack, which is publicly available through the NetLib repository.

One detail of the root solving implementation that should be mentioned is that the equations which
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are being solved can be written in three different ways,

S − 1

Ωi(ui, vi, wi) εi Fi

(
Di(t)

1− τiDi(t)
− Bi(t)

)
= 0, i = 1, 2, . . . ,m, (17a)

S Ωi(ui, vi, wi)−
1

εi Fi

(
Di(t)

1− τiDi(t)
− Bi(t)

)
= 0, i = 1, 2, . . . ,m, (17b)

Ωi(ui, vi, wi)−
1

S εi Fi

(
Di(t)

1− τiDi(t)
− Bi(t)

)
= 0, i = 1, 2, . . . ,m. (17c)

Each of the formulations in Equation (17) was tried with all three algorithms with the following results.
None of the three methods converged to a solution located in the room when Equation (17c) was
used. All three methods converged to reasonable solutions when Equations (17a) and (17b) were used.
However, Equation (17b) yields a form of 1

2f
†f which approaches zero at the root, while Equation (17a)

does not. For this reason Equation (17b) was used as the root function. The performance of these
algorithms on the source location problem is shown in Table 4. In each of these runs the convergence

Algorithm Number of Final Residual Final

Name Iterations ‖f(·)‖2 Solution

Newton-Raphson 70 44263 (39.7, 19.3, 8.7, 0.97× 106)

Newton-Raphson
w/ Gradient Steps

112 3915 (28.8, 7.2, 8.6, 1.0× 106)

Broyden 10 44263 (39.7, 19.3, 8.7, 0.97× 106)

Broyden
w/ Gradient Steps

83 3604 (27.1, 6.9, 8.6, 1.0× 106)

Powell 8 3518 (29.6, 7.0, 8.6, 1.0× 106)

Table 4: The performance of various instantiations of the three algorithms used to solve the source
location problem.

tolerances were the same, and the algorithms were started at the same point, specifically the center
of the room (40.0, 20.0, 4.0, 1.0× 106). Recall that the actual location of the source during this test
was (29.0, 9.0, 6.5,∼106). The background count level Bi(t) was assumed to be 1200 counts per second.
Changing the background level causes these algorithms to still converge to reasonable x and y values,
but to unlikely the z and S quantities. The algorithms denoted by the phrase w/ Gradient Steps take

the first five steps in the direction of the gradient of r (e.g., J†f f), rather than in the Newton direction

(e.g., −J−1
f f). Thereafter they use the Newton direction. Note that the algorithms which initially take

gradient steps produce much better solutions than the corresponding algorithms without gradient steps.
Also note that Powell’s method is by far the best technique, since it produces the best solution, in the
sense of the final residual value, in the fewest iterations. All of the algorithms have a slightly disturbing
tendency to converge to the same height and source strength values. This reinforces the hypothesis that
the U-shaped valley seen in Figure 19(b) consists of a series of height-source strength pairs which all
have very similar residual values. It remains unclear why a height of about 8.6 feet acts as an attractor
for all three algorithms.

As a final experiment we will try to assess the difficulty of locating two sources using Equation (11).
In order to do this, detector readings were artificially constructed from the data for one source. This
was done by adding the detected count rates for the one source case to themselves with the detector
rotated one step clockwise and dividing the sum by two. In other words, the new count rate at detector
#3 was created by adding the old rate at #3 to the old rate at #6 and dividing by two. Likewise the
new rate at #5 was computed by averaging the old rates at #5 and #3, etc. The effect of this is to
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Figure 20: (a) The 2-norm of f(·) plotted with respect to x and y with z and S held constant at 6.5
feet and 2.5 × 106 counts per second respectively. Note that there two sources, one in front
of sensor #3, the other in front of sensor #5.
(b) The surfaces of constant value of the 2-norm of f(·). Note the two separate minima in
the residual surface, each marked with a black dot •.

simulate the count rates for two similar strength sources, one 9 feet in front of sensor #3, the other
9 feet in front of sensor #5. The resulting residual surface is shown in Figure 20(a). The surfaces of
constant value (i.e., level surfaces) of this plot are shown in Figure 20(b). The black dots show the
two separate minima in this surface that correspond to the two sources. Note that the residual values
‖f(·)‖2 at these two minima are within 5% of each other. Figure 20 indicates that finding multiple
sources may be a tractable problem if the sources are each relatively close to a different sensor and if a
root finding algorithm which finds all roots can be developed. One practical difficulty associated with
tracking multiple sources using root finding is that there must be exactly four detectors for each source
in order to have the same number of equations as unknowns. This scaling difficulty motivates the use
of a more general method which can be more easily adapted to a multi-source problem.

5.3 Locating Sources using Least Squares Estimation

In this section we discuss an estimation algorithm used to track the position of the radioactive source
over time. Note that in principle this least squares estimation method can be readily extended to
tracking multiple sources, unlike the root finding method. We begin by discussing how to use the model
in Equation (11) to locate a radioactive source in this framework. Assume for the moment that the
detected count rate Di obeys the deterministic model in Equation (11). For a single source, the count
rate Di at the ith detector defines a single level curve of Mi(u, v, w) given by Mi(u, v, w) = Di. There
is one such curve for each detector and their intersection points define the possible source locations.
The level curves for a single detector are surfaces in 3-dimensions which are illustrated in Figure 21.
The four surfaces in the figure represent solid angles Ωi(u, v, w) of π, π

3 , π
6 , and π

12 , with π being the
innermost (i.e., darkest color) surface, and π

12 being the outermost (i.e., lightest color) surface. The
cut-away shown is taken through the center of the detector, and due to symmetry the whole surfaces can
be constructed by appropriate reflections of this figure around that center point. Therefore the complete
surfaces are approximately ellipsoids, except for a neighborhood near the edges of the detector. Since
the count rate is assumed to be consistent with the model, these four surfaces intersect at only one point,
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Figure 21: The level surfaces for a single detector corresponding to the model in Equation (11). The
four surfaces shown correspond to solid angles Ωi(u, v, w) of π (darkest color), π
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which corresponds to the source location. Now assume that the count rate Di is randomly distributed
with a mean M given by the model in Equation (11) and a variance V proportional to the mean. In
this case the level surfaces become shells whose thickness is proportional to

√
V, and their intersection

becomes some volume element in 3-dimensions wherein the source is located. So in this stochastic
setting, the problem is to find the most likely location for a given set of detected count rates.

This problem was posed as a state estimation problem whose formulation is explained, for instance,
in Sage and Melsa (1971, Chapter 9), Jazwinski (1970, Chapter 6), and Bryson and Ho (1975, Chapter
12). In this context the measurements or outputs are the detected count rate Di(k) at each detector
i at each time step k. The states are chosen according to the problem that must be solved. In this
case, the state must at least contain the source location (x(k), y(k), z(k)) at every time step k. In
addition to the source location, another unknown in Equation (11) is the background count rate Bi at
each detector. We assume that the background is the same at each detector, making B(k) independent
of i, and include this single quantity in the state. Denote any change in the state estimates at time k
by the vector d(k) = [δx(k) δy(k) δz(k) δB(k)]†, denote the state estimates at a particular time step
k by the vector e(k) = [x(k) y(k) z(k) B(k)]† and call the number of elements in each of these vectors

p = 4. We chose to approximate the detected count rates with the vector D̂(k) drawn from a Poisson
process with mean vector M(e(k)), where e(k) is the current state estimate. The structure for our
approximate system is shown in Figure 22. In this figure, M(·) is the vector form for the right hand
side of Equation (11), I is the identity mapping, ∆−1 is a unit time delay, and n(k) is a multiplicative
noise process. Multiplicative noise is chosen because the link function defined in McCullagh and Nelder
(1989, Chapter 6) for a Poisson distribution is exp(·). Under this mapping the expected value for the
approximate count rate D̂i(k) is E{D̂i(k)} = exp(E{M̃i}) exp(E{ni}). Define the deterministic part
of the model by exp(E{M̃i}) = Mi(e(k)), and let the noise portion ni(k) be a zero mean process.
Therefore the noise mean is exp(E{ni}) = 1, and the modeled mean count rate is E{D̂i(k)} =Mi(e(k)).
Since we want D̂i(k) to have the properties of a Poisson process, its variance must also be Mi(e(k)).
This will be the case if the noise process is chosen such that exp(E{n2

i }) =Mi(e(k)). This means that
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Figure 22: A block diagram of the system approximation.

the characteristics of the stochastic portion of the model are dependent on the deterministic part of the
model, in marked contrast to typical system models with Gaussian noise.

We find the maximum a posteriori (MAP) estimate for the state at each time step. As pointed out in
Sage and Melsa (1971, Chapter 9), for a Gaussian noise process this is equivalent to finding a weighted
least squares fit to the measurements. This turns out to be true even when the system is nonlinear. For
Gaussian noise the proper weights are the noise covariance matrices. Based on the analysis in McCullagh
and Nelder (1989, Chapter 2), we will show that for a Poisson noise process, the MAP estimate is still
equivalent to a weighted least squares fit, but with different weights. We have chosen the MAP estimate
over the conditional mean (i.e., minimum variance) or conditional median (i.e., minimum absolute error)
estimates because we must incorporate state constraints into the estimation process. This turns out to
be quite easy if one is using weighted least squares, even when the model is nonlinear. Note that we
did not choose an extended Kalman filter as an estimation method in our problem both because we
have state constraints, and because the noise process in our problem is Poisson rather than Gaussian.
Furthermore, a study in Jazwinski (1970) concludes that for systems with relatively large measurement
nonlinearities, such as ours, the extended Kalman filter converges rather slowly to the actual state.

We start our estimation process at time k = 0 with an estimate of the source position and background
level (x(0), y(0), z(0),B(0)). We assume that this initial estimate consists of the correct values at this
time. We also assume that the absolute source strength S is known, and that the correction factor
product Fi is constant over time. Note that these assumptions may not always be reasonable, but in our
problem they are often valid. At succeeding time steps we update our estimate of the source location
and background level using the relations

x(k) = x(k − 1) + δx∗(k),

y(k) = y(k − 1) + δy∗(k),

z(k) = z(k − 1) + δz∗(k),

B(k) = B(k − 1) + δB∗(k),

(18)

for all time steps k = 1, 2, 3, . . . , where δx∗(k), δy∗(k), δz∗(k), and δB∗(k) are state changes which are
optimal in some sense. Note that using our previous definitions, Equation (18) can be written in vector
form as e(k) = e(k − 1) + d∗(k).

At each time step k the optimal estimated state change d∗(k) is computed by solving the optimization
problem

d∗(k) = arg min
d(k)

(
m∑
i=1

Wm
i

(
Di(k)−Mi

(
e(k − 1) + d(k)

))2

+

p∑
j=1

Wd
j d

2
j (k)

)
,

subject to

−Nj ≤ dj(k) ≤ Nj ,
Lj ≤ ej(k − 1) + dj(k) ≤ Uj ,

j = 1, . . . ,p, k = 1, 2, . . . .

(19)

In this equation, Mi

(
e(k − 1) + d(k)

)
represents the mean value of our approximation of the detected
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count rate E{D̂i}, given by the right hand side of Equation (11) evaluated at e(k − 1) + d(k) for the
ith detector. Note that evaluating the right hand side of Equation (11) requires solving Equations (12)
and (13) first. The quantity Wm

i is a weight which determines how closely the algorithm tries to
match the model. Similarly, Wd

j sets how much the algorithm is allowed to change the previous state

estimate. The term
∑m

i=1Wm
i

(
Di(k) −Mi

(
e(k − 1) + d(k)

))2
is a weighted L2 norm of the difference

‖D(k)−E{D̂(k)}‖2 between the actual detected count rateD(k) and the expected value of the predicted

detected count rate E{D̂(k)}. This term corresponds to a weighted least squares fit of the state estimate
to the measurements. Likewise the term

∑p

j=1Wd
j d

2
j(k) is the weighted L2 norm of the difference

‖e(k) − e(k − 1)‖2 between the estimated position and background at the previous time and that at
the current time. This is a regularization term that penalizes large changes in the state estimate more
than small changes. So Equation (19) will try to minimize the change in position and background while
simultaneously making a change that makes the resulting position and background approximately agree
with the model. When selecting the weights, note that making Wm

i large relative to Wd
j reflects a high

confidence in the sensor model, while setting Wd
j high with respect to Wm

i indicates confidence in the
sensor measurements.

As stated previously, the MAP state estimate for a Poisson noise process is equivalent to a weighted
least squares fit of the measurements with the appropriate weights. Maximizing the a posteriori proba-
bility P{e(k) |D(k)} is equivalent by Bayes rule to maximizing the probability P{D(k) | e(k)}P{e(k)}.
Assuming that the measurements at a given time step D(k) are statistically independent, then given
the source location e(k), the conditional probability for the measurements D(k) is simply the product
of Poisson distributions

P{D(k) | e(k)} =
m∏
i=1

exp

(
1

γ2
i

Di(k) ln
(
Mi(e(k))

)
− 1

γ2
i

Mi(e(k))− ln
(
Di(k)!

))
, (20)

in whichMi(e(k)) is the mean count rate for the ith detector given the state e(k). Each component of
this Poisson distribution has a variance equal to γ2

i times the mean, V(Di) = γ2
i Mi(e(k)). Assuming

that all states e(k) are equally likely, we chose a uniform a priori probability P{e(k)}. The uniform a
priori probability only scales the conditional probability P{D(k) |e(k)}, and so does not effect the loca-
tions of extrema. Furthermore, the extremal points are invariant under the monotonic transformation
ln(·). Hence we will maximize the natural logarithm of the quantity in Equation (20), which we call the
likelihood function L(D;M). Maximizing L(D;M) is equivalent to minimizing the difference between
the largest possible value for L(·), which is whenM = D, and the value of L(·) for the estimate M.
All of this discussion implies that the MAP estimate for e(k) under a Poisson distribution is obtained
by minimizing the quantity

2
m∑
i=1

1

γ2
i

(
Di(k)

(
lnDi(k)− ln

(
Mi(e(k))

))
−
(
Di(k)−Mi(e(k))

))
. (21)

This result is analogous to the one obtained in McCullagh and Nelder (1989, Chapter 6) for a univariate
Poisson distribution. An equivalence can be established between the first term in Equation (19) and
Equation (21) by taking the first order Taylor series expansion of lnDi(k) about the point Mi(e(k)),
and substituting this expansion into Equation (21). It is straightforward to show that the result of
this substitution is identical to the first term in Equation (19) if the model weights are chosen as
Wm
i = 1

γ2
i Mi(e(k))

. Note that this choice of weights results in the diagonal weight matrix Wm =

diagi=1,... ,m

(
(γ2
i Mi(e(k)))−1

)
. The quantity γ2

i is the constant of proportionality between the variance
and the mean, called the dispersion. It is stated in McCullagh and Nelder (1989, Chapter 6) that in
practice γ2

i is often greater than 1. For example, this occurs when samples of the Poisson process are
made at random time intervals, rather than fixed intervals. This occurs in our problem because the
length of time between count rate samples Di(k) for each detector varies over time. Furthermore, the
order in which the different detectors are sampled varies with time. We will discuss our choice for the
dispersion parameters γ2

i in Section 5.4.
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Note that there are upper and lower bounds on the state change d(k) and on the state estimate e(k).
The constraints on the estimate e(k) are imposed so that the estimated position can not be outside the
room, and the estimated background can not exceed historical bounds for the background levels in the
room. The constraints on the change in estimate d(k) are imposed in order to keep noise from causing
the position to jump around excessively from time step to time step. Conceptually these constraints are
reasonable because the sources are moved by people, and there is a limit to how far a person can move
in a given time interval.

The optimization problem posed in Equation (19) is a nonlinear programming problem with linear
inequality constraints, which can be solved by a number of methods, many of which are discussed in
Bertsekas (1995, Chapter 4) and Fletcher (1987, Chapter 12). The optimization algorithm that we chose
was CFSQP, which is documented in Lawrence, Zhou, and Tits (1994). This algorithm uses a sequential
quadratic programming (SQP) approach, modified so that each iteration is feasible with respect to the
constraints. This algorithm is designed to minimize the maximum of a set of objective functions (i.e.,
minimax problems), but since our set of objective functions contains only one member it also solves
the problem posed in Equation (19). We chose this algorithm because all the intermediate iterates of
the algorithm are feasible, so if we have to stop the optimization before achieving convergence, the
resulting suboptimal solution will still satisfy the constraints. This is an important consideration in our
application because we need to track the sources in real-time relative to the average detector sampling
time, which in our case is 1 second. Hence if our optimization runs for more than 1 second at time
step k we simply stop it, use the resulting suboptimal solution for the estimate e(k), and then begin
estimating the next position e(k + 1) with the new sensor data.

The method outlined so far computes the current state estimate e(k) based only on the cur-
rent measurement D(k). In principle a better estimate may be obtained if the last l measurements(
D(k), D(k − 1), . . . , D(k − (l − 1))

)
are used. This is the idea behind the moving horizon state

estimation procedures described in Muske and Rawlings (1995). The optimal state change d̃
∗
(k) over

the entire window is found by solving the optimization problem

d̃
∗
(k) = arg min

d̃(k)

(
l−1∑
n=0

(
m∑
i=1

Wm
i

(
Di(k − n)−Mi

(
e(k − n− 1) + d(k − n)

))2

+

p∑
j=1

Wd
j d

2
j(k − n)

))
,

subject to

−Nj ≤ dj(k − n) ≤ Nj ,
Lj ≤ ej(k − n− 1) + dj(k − n) ≤ Uj ,

j = 1, . . . ,p, n = 0, . . . , l− 1, k = 1, 2, . . . .

(22)

This equation reduces to Equation (19) when the window length l is equal to 1. In Equation (22) the
state change for the entire window at time step k is d̃(k) = [d(k) d(k − 1) · · · d(k − (l− 1))]†, and the
state estimate is ẽ(k) = [e(k) e(k − 1) · · · e(k − (l − 1))]†. This algorithm is initialized by performing
a batch estimation until sample time l. Muske and Rawlings (1995) present examples from several
application areas in which this method outperforms one-step (i.e., l = 1) recursive estimation.

5.4 Tracking Results

In this section we present tracking results based on experiments with a source in the facility. Note
that the experiment used to test the source tracking is different from the experiment used for sensor
characterization. The experimental procedure consisted of placing a Cs137 source on a cart and moving
it along a predetermined path in the room. Along this path there were 17 points at which we paused with
the source for approximately 3 minutes each. The purpose of the 3 minute pauses was to collect enough
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data at each position to compute a mean count rate for each sensor at each position. The resulting
means are used to compare the performance of our algorithm on the actual data to its performance on
idealized Poisson data. The estimated position of the source as seen from the ceiling looking down is
shown in Figure 23 . Figure 23(a) shows the estimated source positions for dispersion γ2

i = 1 for all

•
•

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••
••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • ••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••• •••• ••

••••••••••••••••••••••••••••• •
• ••••••••••

•
••

•
•

•••

•
•••• •••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••
•••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••
••••••••••••••••••• ••

• ••••••
•

•••••••••••••••••••••••••
••••••••••••••••••••

••••••••••
••••••
••••••••••••••••••••••••••••••••••••
•••••••••••••••••
•
••••
•••••••••••
•••

•••••••••••••••••••••
• • • •

••••••••••
•

••
••••••••••
•
•••••••
••••••••••••••••
•••••••••••••••••••

••••••••••
•••••••••••
••••••••••••••••••••••••••••
••••••••••••••••••••••••

••••••••••••••••••••••
••••••••••••••••••

• •
• •••••••••

••
••
••••••••
•
•••••••••••••••••••••••••••••
•••••••
•••••
••••••••
••••••••••••
••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••• •

• •
• •

•••
•
•

• • • •
•••• •• ••••••••••••• • ••••••••••••••••••••• •••••••••• •••••••••••••• •••••••••••••••• ••• •••••••••••••••••••••••••••••••••••••••••••• •••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••

•
• • ••••••• ••• ••••• ••••••••••••• ••••••••••••• •••• •••••••••• ••••••••••••••• ••• •• •••••••••••••• ••••••••••••••••••••••••••••••••••• •••••••••• • ••••••••••• •••••••• •• •••••••••• ••

••••
••••••••••••••

••••••••• ••• •••••••••• • ••••••••••••••••••••••• •••••••••• •••••••••••••• ••••••••

•

• ••• •••
••

••
••• •••••••• •••••••••••• ••• ••• ••••••• ••••••••• ••• •••••••••••• •••••••••••

•• ••
•••••••

•••••••••••••••••
•

•
••
••••••••••
•
••••••••••••••••••••••
•••••••••••••••••••••••
•••••••••••

•••
•••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••
•
•

••
•

•••••••••••••••••••••
•••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••
•••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••
••••••••••••••

••••••••••••• •••••••••••••••••••
•••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••

•
••••••••••••••••••••
•••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••
•••••••
•••••••••••••
••••••••••••••••••••••
•••••••••••••••••••••••••••

••
•••

••••
•••••••••••••••••••••••••••••••••••••

••••••••••••• ••••••••••••• ••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

0 10 20 30 40 50

0
5

10
15

20
25

30

Distance x (feet)

D
is

ta
n
ce
y

(f
ee

t) 1
2

3

4

5
6 7 8

9
10

11

12
131415

1617

(a)

•
• • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • • ••••••••••

•••
•
•

•••
•
••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••• •• • •••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••• • • • •••••••••••••
•••••••••••
•••
••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •
• •
•• ••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

• •• • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•
• ••••••

•• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••

•••••••••••••••••••••
••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

0 10 20 30 40 50

0
5

10
15

20
25

30

Distance x (feet)

D
is

ta
n
ce
y

(f
ee

t) 1
2

3

4

5
6 7 8

9
10

11

12
131415

1617

(b)

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • ••••••••• ••••• •••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•• • •••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • • • ••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • ••
• ••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••• • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••
••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

0 10 20 30 40 50

0
5

10
15

20
25

30

Distance x (feet)

D
is

ta
n
ce
y

(f
ee

t) 1
2

3

4

5
6 7 8

9
10

11

12
131415

1617

(c)

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••
• ••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••
•••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

0 10 20 30 40 50

0
5

10
15

20
25

30

Distance x (feet)

D
is

ta
n
ce
y

(f
ee

t) 1
2

3

4

5
6 7 8

9
10

11

12
131415

1617

(d)

Figure 23: The estimated position of the source in the x-y plane with dispersion (a) γ2
i = 1 (b) γ2

i = 10
(c) γ2

i = 50 (d) γ2
i = 100 for window length l = 1. These plots show a view of the room

from the ceiling looking down. The detectors are located in each of the four corners of these
pictures.

i, Figure 23(b) shows the locations with γ2
i = 10, Figure 23(c) illustrates positions for γ2

i = 50, and
Figure 23(d) gives estimates for γ2

i = 100. In all cases the state weights are Wd
j = 1 and the window

length is l = 1. The 17 numbers in these plots show the actual positions of the points at which we paused
with the source. Beginning at point 1, we followed the numbered points in ascending order, ending at
point 17. The points • in the figure represent the pairs (x(k), y(k)) of the state estimate for every time
step k. These estimates are computed at 1 second intervals, which is also the average sampling time
for the detectors. Our algorithm runs fast enough for us to compute each state estimate in less than 1
second, hence we are able to track the source in real-time relative to the average sampling rate of the
detector. Although the detectors do not appear in these pictures, they are located in each corner at a
45◦ angle with respect to the walls. Note that as the dispersion γ2

i is increased from Figure 23(a) to
Figure 23(d), the position estimates go from clusters around the 17 numbered points, to a smooth track
running through these 17 points.

Figure 23 shows that most of the estimates of the source location are close to the path described
by the 17 points where we paused with the source. However, it does not show whether the estimates
follow this path in the correct temporal order. Figure 24 shows the estimated positions in both the x
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and y directions versus time for the x-y plots shown in Figures 23(a) and 23(d). In these two plots the
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Figure 24: The estimated positions of the source for dispersion γ2
i = 1 in the (a) x-direction (b) y-

direction versus time. The calculated source locations for dispersion γ2
i = 100 in the (c)

x-direction (d) y-direction versus time. The dotted lines show the actual source positions
over time.

the solid lines represent the estimated source position, and the dotted lines represent the actual source
position. Figures 24(a) and 24(c) plot the positions in the x-direction versus time for dispersions γ2

i = 1
and γ2

i = 100 respectively. Likewise Figures 24(b) and 24(d) show the y-position with respect to time
for the same two dispersions. It is clear from these pictures that the numbered points are visited in the
correct order.

We estimated the error of this tracking algorithm using the following two statistics. For both statistics
we begin by taking the absolute value of the difference between the median estimated position and the
actual position for each of the 17 positions in both the x and y directions. This corresponds to taking
the median value of each plateau in Figure 24, subtracting each median from each dotted line, and
taking the absolute value of each result. This results in two sets of 17 numbers, one for each direction
x and y. For the first statistic, combine the elements within each set by taking the maximum value
over the set. Call the resulting maximum absolute error in the x-direction Emaxx , and in the y-direction
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call it Emaxy . For the second statistic, take the median value to combine the differences within each

set. Denote the median absolute error along x by Emedx and along y by Emedy . These two statistics are
then used to compute two percent location error statistics for the algorithm. To find the maximum
percent location error Rmaxe , construct a rectangle of width 2 Emaxx and height 2 Emaxy . Compute the
percent location error Rmaxe by dividing the area of this rectangle by the area of the room. Similarly the
median percent location error Rmede is computed by dividing the area of the 2 Emedx × 2 Emedy rectangle
by the room area. For the dispersion values γ2

i = 1 and γ2
i = 100 shown in Figure 24, the values of

these error statistics are given in Table 5. Based on these two error statistics it appears that the lower

γ2
i Emaxx (feet) Emaxy (feet) Rmaxe (%) Emedx (feet) Emedy (feet) Rmede (%)

1 3.137 2.141 2.117 0.740 0.909 0.212
100 2.916 2.284 2.099 0.769 1.358 0.329

Table 5: Two error measures for the location estimates shown in Figure 24.

dispersion value γ2
i = 1 leads to a more accurate estimate than the higher dispersion value γ2

i = 100.
Also it appears that increasing the dispersion increases the time lag between the estimated and actual
locations.

The statistics in Table 5 become more meaningful when compared with the those from an idealized
situation. As a baseline against which to evaluate our performance, we chose a scenario in which the
gamma emissions from the source were assumed to be a Poisson process with dispersion γ2

i = 1, and
the detectors were assumed to output the exact gamma count rate with no additional noise. To test the
algorithm on this ideal scenario we generated synthetic data drawn from a Poisson process as the output
of each detector. This synthetic experiment was identical to our actual experiment in that the synthetic
source paused for the same length of time at the same 17 positions. The synthetic data was generated
by first taking the average µil of the actual count rate for each detector i = 1, . . . , 4 at each position
l = 1, . . . , 17. We then computed the number of measurements sl made at each position l = 1, . . . , 17.
Using these two numbers we drew sl samples from a Poisson distribution with mean µil for all detectors
i = 1, . . . , 4 and all positions l = 1, . . . , 17. Twenty-five synthetic data sets were created in this fashion,
and our algorithm was run on each of them with a window length of l = 1. We then computed the
median absolute error in both the x and y directions for the estimates generated with each of these
twenty-five synthetic data sets. For comparison to the results with actual data, we calculated the mean
and standard deviation of this statistic over the twenty-five synthetic runs. The results are presented in
Table 6. Notice that both Emedx and Emedy for the actual data fall within one standard deviation of the

Mean Deviation Mean Deviation
Emedx (feet) Emedx (feet) Emedy (feet) Emedy (feet)

Actual 0.740 — 0.909 —
Synthetic 0.758 0.0219 0.922 0.0156

Table 6: A comparison of the median absolute error between the actual data and synthetic data drawn
from a Poisson distribution.

means for the synthetic data. We conducted a Wilcoxon test, described for instance in Conover (1980,
Chapter 5) and Hollander and Wolfe (1973, Chapter 2), of the hypothesis that the value of Emedx for the
actual data was drawn from a distribution having the same mean as the one for the synthetic data. We
conducted a similar hypothesis test for the statistic Emedy . These hypothesis tests gave p-values of 0.0006

and 0.0003 for Emedx and Emedy respectively. The p-value specifies the maximum significance at which
the null hypothesis should be accepted. So if the desired level of significance is less than the p-value,
accept the null hypothesis, otherwise reject it. The level of significance is the probability of accepting
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the alternative hypothesis when the null hypothesis is true, so it is conceptually identical to a maximum
false alarm rate. We chose 0.01 (i.e., a 1% false alarm probability) as a reasonable significance, therefore
with 99% confidence both Emedx and Emedy for the actual data came from distributions with means that
were different from the synthetic data distributions. Note that the closer the p-value is to one, the
more likely it is that the means of the actual distributions are equal to the means of the synthetic
distributions. Several conclusions emerge from this analysis. First, the performance of our algorithm
on real data is qualitatively very similar to its performance on idealized synthetic data, which indicates
that our model captures the major features of the real data. Second, since the errors for the actual
data have a different mean than those for the synthetic data, our assumption that the dispersion γ2

i is
one is probably incorrect. Third, since the median absolute errors for both the actual and synthetic
data are not zero, there is probably a minor systematic error in our sensor model. We conjecture that
the primary source of unmodeled error comes from neglecting the change in gamma absorption with
position due to the finite detector thickness, but we have not attempted to model this phenomena.

We now address the issue of choosing an appropriate value for the dispersion. It is clear from
Figures 23 and 24 that the deviation between the estimated and actual position, called the bias, changes
as the dispersion γ2

i changes. The estimator bias is given mathematically by the expression B =
|E{e} − E{p}|, where E{p} is the true source position and background count rate. Note that this
definition means that our error statistics from the previous paragraph are the maximum model bias and
the median model bias as a percentage of the room size. It can also be seen in Figures 23 and 24 that the
deviation between the estimated position and the average estimated position, called the variance, also
changes with dispersion. The estimator variance is given by V = E{(e−E{e})2}. One way to choose the
dispersion parameter γ2

i is by selecting the value which minimizes the sum of the bias squared and the
variance. Since the sum of squared bias and variance represents the total error made by the model, this
choice of dispersion will minimize the total error. Plots of bias, standard deviation, and total error for
the x-y plane for a range of dispersion values are shown in Figure 25. Figure 25(a) plots the estimator
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Figure 25: The change in (a) estimator bias (b) estimator standard deviation (c) total estimator error
as a function of the dispersion parameter γ2

i .

bias versus dispersion γ2
i , Figure 25(b) shows the change in standard deviation with dispersion, and

Figure 25(c) illustrates the variation in total estimator error as dispersion changes. Comparing the
relative sizes of the errors in Figures 25(a) and 25(b), it is clear that bias is the dominant error source in
this problem. Also note that bias generally increases as dispersion increases, while standard deviation
decreases with increasing dispersion. This seems reasonable if the dispersion is considered a smoothness
parameter, since increasing the smoothness tends to decrease standard deviation and increase bias.
From Figure 25(c) it appears that the minimum value for the total error occurs at the dispersion
γ2
i = 2. Analyzing the variance to mean ratio of the data gives an average dispersion value of 1.60,

which is in excellent agreement with Figure 25(c).

We found that with the system model shown in Figure 22, the state estimates for all window lengths
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l > 1 were almost identical to the estimates for window length l = 1. We believe that this observation can
be explained by the fact that the model in Figure 22 has no dynamics, hence any change in the estimate
e(k − 1) is completely determined by the external driving force d(k). While it may appear that the
regularization term ‖e(k)−e(k−1)‖2 provides some coupling between the states at different times, recall
that the current state estimate e(k) is selected so as to minimize this term. Therefore the observation
that there is only very weak coupling between states at different times seems reasonable. If the model
contained terms approximating the source velocities, then perhaps a moving horizon state estimate with
window length l > 1 would be different from a state estimate with window length l = 1. However,
velocity estimation has questionable value in this problem because a person can change velocities much
more quickly than our average detector sampling rate.

6 Conclusion

We have described real-time algorithms for both detecting the presence and tracking the position of
radioactive sources in a facility in the presence of measurement noise. We formulated the detection
problem as a nonparametric hypothesis testing problem. This problem is solved by comparing a statistic
computed over some window(s) of the data to a threshold value. If this threshold is exceeded then
a source is present. We formulated the tracking problem as a state estimation problem and solved
it recursively using a constrained nonlinear optimization method. The optimization simultaneously
minimizes the change in source position and disagreement between measurements and a sensor model.
The sensor model is a fairly complex function relating position to detected count rate.

The overall purpose of this work is to enhance both security and safety by automating part of
the assessment process, allowing remote assessment, and introducing new sensor modalities into the
assessment process. We presented detection and tracking results based on experiments done with one
source in a single room. Our results indicate that a source can be detected and tracked quite well with
these algorithms in spite of fairly poor signal to noise ratios, and rather high measurement noise levels.
In short, we have demonstrated the capability to detect and track a single source in real-time with high
accuracy in spite of a complex sensor model, an unknown background signal, and high measurement
noise.
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